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peaks excited by an elastic deformation is much lower
for A = 1.54 x 107! nm compared with A = 1.05 x
10~! nm, the peaks can be experimentally eliminated by
choosing a suitable azimuthal angle @.

The comparison of the experimental results with the
theoretical ones in Table 1, as well as the proof of the
quadratic intensity dependence on the vibration am-
plitude (I ~ u2), show that the developed lamellae
model successfully explains the basic phenomena of
multiple diffraction observed in an elastically deformed
single crystal.

The authors wish to thank Miss B. Haskova and Mr
A. Dvorak for their help in preparing the manuscript.
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Abstract

Starting with the expression for the intensity distri-
bution in a structure image, it is shown that, for a very
thin crystal and constant value of the transfer function,
there is a one-to-one correspondence between the image
and the projection of potential distribution in the crystal
along the beam direction. This is formally equivalent to
the treatment of weak phase objects by Cowley &
lijima [Z. Naturforsch. Teil A, (1972), 27, 445-451].
With a better approximation, applicable to slightly
thicker crystals, it is shown that the image contrast is
related not only to the projected potential distribution,
but to the square of this function and the projected
charge density. Simulated structure images of a silicon

* Presently at: Department of Metallurgy and Science of
Materials, University of Oxford, Parks Road, Oxford OX1 3PH,
England.

0567-7394/81/040465-07$01.00

crystal, oriented with its [011] direction parallel to the
incident beam, show that the distance between the
closely spaced spots is increased along the [001]
direction, in agreement with experimental images,
which is a consequence of not enough diffracted beams
contributing to the image as a result of spatial and
temporal incoherence of the incident electron beam.

1. Introduction

Cowley & lijima (1972) showed that, at the proper
defocus, there is a direct correlation between the
intensity distribution in a structure image of a very thin
crystal and the projection of the crystal structure. Their
analysis was based on the expansion of the trans-
mission function of a phase object, which represents the
change of phase of the electron wave on traversing the
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potential field of the specimen. Assuming a weak phase
object, we find that the second- and higher-order terms
in the expansion may be neglected and their analysis
follows. Assuming a purely phase object, Cowley
(1975) and Fejes (1977) have further shown that the
arguments concerning imaging conditions based on the
weak-phase-object approximation (WPOA) should also
hold for a strong phase object in a qualitative manner,
although they fail quantitatively.

The basis of the multi-slice formulation of the
dynamical theory of electron diffraction is also based
on the assumption of the phase-object approximation
(POA) for each hypothetical slice of a crystal and the
convolution of such a transmission function with a
propagation function as the electron beam propagates
from one slice to the next (Cowley & Moodie, 1957).
The equivalence of the multi-slice formulation of the
dynamical theory and the Bloch-wave formulation has
now been firmly established (Goodman & Moodie,
1974; Jap & Glaeser, 1978). It would therefore be
interesting to establish the relationship between the
intensity distribution in the structure image of a thin
crystal and the potential distribution in the crystal,
starting from the Bloch-wave formulation of lattice
imaging. The result of such an analysis shows that, for
a very thin crystal, provided the contrast transfer
function is constant for all the beams admitted by the
objective aperture, the contrast in the structure image is
in a one-to-one correspondence with the projection of
the potential distribution (PPD) in the crystal along the

"beam direction. At a higher approximation, i.e. for a
relatively thicker crystal, it is shown that the image is
proportional to a linear superposition of projected
potential distribution, the square of this function and
the projected charge density (PCD). Since, for struc-
tures whose projections consist of resolvable (i.e.
non-overlapping) atoms, the variations of all these three
functions are in phase, the maxima and minima in the
image intensity may be related to the peaks and
troughs of the PPD. This correlation is, however, no
longer linear and as straightforward as the case where
WPOA is applicable.

Some examples of images from a very thin crystal
(WPOA), obtained under the condition of constant
transfer function for different numbers of beams
contributing to the image, are presented. These images
show that the true dimensional and angular relation-
ships in the crystal are not reproduced in the image
even for a weak phase object at the proper defocus
unless a large number of beams effectively contribute to
the image. The reason for the deviation in the
experimental images is probably that, because of spatial
and temporal loss of coherence, not enough diffracted
beams contribute to the image for a true representation
of the PPD. Simulated images from thicker crystals
show that the same deviations are also present in these
images.

THIN-CRYSTAL APPROXIMATIONS IN STRUCTURE IMAGING

2. Contrast in lattice images

The intensity, I(r), at a point r in the image plane is
given by (Pirouz, 1979, 1980)

1(r)=—A%Z Z B!

j

XZZD{E'Gexp [% (g—G).rJ, (D

where
B =y y*D exp (27t Ay, (2a)
Dil = CY CED exp {—2milx(g + K,)
—x (G + K\l (2b)

In these equations, M is the magnification, w” is the
excitation amplitude of the jth Bloch wave, C{/ is the
amplitude of the jth Bloch-wave component of the gth
diffracted beam, A4y is the distance between j and /
branches of the dispersion surface, K, is the tangential
component of the incident wave vector (parallel to the
zero-order Laue zone) and x(g) is the aberration
function defined as follows:

grAf
2K,

C gt
4K}

x(®=

E]

where K, is the incident wave vector, C; is the
coefficient of spherical aberration and 4 f'is the defocus.
The parameter y? in (1) is related to the normal
component of the Bloch-wave vector, k), by the
following relation:

y(ﬂ = kgj) — Kz’

where K, is the normal component of the incident wave
vector.

The intensity, 7(r), may be expressed as the sum of
two parts: a constant background intensity, 7, and a
contrast term, 4I(r), above or below the background,
as follows:

I(r)y= I, + AI(r),

where I and 4I(r) are given by theg=G and g # G
terms in (1) respectively.

The above equations show that, in order to calculate
the intensity of a lattice image, we need to know the
excitation coefficients, '/, the wave amplitudes, C{?,
and the parameter y* of each Bloch wave j. In general,
C{" and y are obtained from the following eigenvalue
equation (Hirsch, Howie, Nicholson, Pashley &
Whelan, 1965):

ACW = y(!l C(J'), (3)

where C is a column vector whose elements are the
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-wave amplitudes of a particular Bloch wave j. The
elements of matrix A are given by (Pirouz, 1974)

(4a)

1
a,=— g2+ 2g.K
1 2Kz(gl g.Ky)

1
—— Ui-]’ i¢j. (4b)

2K

z

aU=

U, is the Fourier coefficient of the ith term in the
following series expansion of the crystal potential, ¥ (r):
2

Vir') ’
f " 2me

Z U,exp 2nig.r'), (5)
14

where r’ is a position vector in the crystal. As (4)
shows, the matrix A is Hermitian, thus implying that the
matrix of wave amplitudes, C, is unitary. It can then be
easily shown that

y = CO, (6)

In structure imaging, nearly always, the incident
beam is parallel to a low-index zone of the crystal under
observation. Hence, the zero-order Laue zone is parallel
to the crystal surface and K, = 0.

3. Thin-crystal approximations

Let us expand the exponential in (2a) in terms of
powers of ¢:

exp Qnitdy’) = 1 + 2mitdy”
22 AY 4 .. o)

Each power of ¢ in the above expansion gives rise to a
contrast term in (1). Hence we may write

AI(r)=AI,(r) + AL(D + ... + AL (1) + ...,

where A1, refers to the ¢” term in (7).

(3

3.1. The PPD approximation

In this approximation, we assume a very thin crystal,
(t < 1/4y"), such that the second and higher powers of
t in (7) may be neglected, i.e.

exp RritAy") ~ 1 + 2mitdy”.... ®

Substituting (9) in (1) and rearranging, we get:

1 27
AIL(r) = 50 Zg%z exp {7 (g— G).r]
x exp {—2milx(g) — x(G)I}

X { Z C¥h CcY Z CO Cro
J !

+ it [Z CrD yh CY Z C{ Cxo

J !l

- Z C{h y CrO chm Cgﬁ] }
[ i
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Making use of the orthogonality relation
Z CY CED = 6,6,
1]

where d, is the Kronecker delta, we can see that all the
terms in the summation over G are zero except for the
term G = 0. Also, since g # G, we have g # 0 and
2.;C¥D CY = 0. Hence, the above equation for the
image contrast reduces to

27it 27
AI,(r)=T/P— Zexp T{—g.r

g+#0

x exp [—27ix(g) Y C§y CY

J

2mi
_Z exp —Wg.r

g#0
x exp [27ix(g)] z c§ y¥ C;“”]. (10)
J

Now let us represent the gth row of the matrix A by the
row vector A,. In this case (3) and (4) show that

yD Cgf) =A, Cc = Z Qg CV’
k

and
Z CED ) W = Za&”‘ Z Cro Y
J k i
: U,
Qg =———
#T oK, 8
Similarly,
1
Z CYP Yy C* D =a¥ = a,,=——U_,.
: 2K,

Substitution in (10), with the fact that x(g) is an even
function, then gives

2nt 2mi
U, exp (— g r) sin [27y(g)).
MK, g; ¢ M a

Note that r is a vector perpendicular to the incident
beam direction.

Now, the projection of the potential distribution
along the beam direction, V,(r), may be Fourier
expanded as follows:

2

Al (r) = —

(12)

V()= (U, + Z U, exp (27ig.1)],

g#0

where U, is the mean inner potential. A comparison of
(11) and (12) shows that, for a very thin crystal, the

2me
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image contrast is in a one-to-one correspondence with
the PPD provided that

sin [27y(g)] = constant, 13)

for all the reflections admitted by the objective aperture.
Positive and negative values of the constant give images
with reverse and normal contrast respectively. The
image obtained from a very thin crystal with condition
(13) satisfied may be called a ‘PPD-type image’.

3.2. The second-order approximation

Let us now consider 4L,(r) in (8), which corres-
ponds to the contrast term due to the second power of ¢
in (7). With the same type of analysis as in § 3.1, it can
be shown that

27z r? 2m (2 |
(Z exp (7 g. r) exp mix(g)

8+0

AL(r) =
x Z YO CED cY

27
+ Z exp (— —g. r) exp [27ix(g)]
g#0
> Z yI C§ C*o

J

Y ZZ UU% exp[—(g G)l']

. g#G

x exp {—27l x(g) —x(G)] })- (14)

With a well known relationship for a diagonalizable
matrix such as A:

A k C—l yk C,
where y is the diagonal matrix of eigenvalues, we can
see that
2
Z CyD 9y CP =al,
J
and

Z C(i) y(.’) C*(f) aOg’

where ag, and ag, are elements of the A2 matrix:

r
axo—‘zagkako_
k
a' — p—
0e = 2, Coglrg =
k

Now, the operation of squaring any functipn is

2U+Z U, o),

k#g#0

Wy Y UHULY.

2
4Kz k#g#0
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equivalent to the operation of self-convoluting its array
of Fourier coefficients (Sayre, 1952):

“Uy=> Uy Uyy (15)
k
where “U, are the Fourier coefficients of V2(r):
h4
Vi = ppcye D U, exp (2nig.r).  (16)
8

Hence, (14) reduces to

2 42 2
AL(r) = (ZU Z U, exp (—A?g r)cos [27x(g)]

M K2

2mi
+Z gz Ug exp (7 g. r) cos [Zn;((g)]

£+#0

i
_ Z sy, exp (% g.r) cos [2my(g)]

g+#0

+ZZU

g+G

% exp [— &—G). r}

x exp {—27il y(g) — x(G)] }) . 17

The physical meaning of A47,(r) becomes clearer if we
assume an ideal imaging system for which condition
(13) holds and examine the four terms in (17). The first
term is just the projected potential distribution multi-
plied by the mean inner potential of the crystal, U,. The
second term is proportional to the PCD, p,(r), since
from Poisson’s equation

py(r) oc V2 "

U, exp (27ig.r).

Finally, the third and fourth terms are proportional to
the square of the PPD from (16) and because

Vi) = “ZZU

Hence, we see that, prov1ded condition (13) is satisfied,
AI(r) is proportional to a linear superposition of the
PPD, square of the PPD and the PCD:

AL(r) = aV,(r) + Bp,(r) + y V (), (13)

where a, f3, y are constants proportional to 2. Similarly,
the total image contrast, AI(r) ~ AI,(r) + AI(p), is
proportional to a linear superposition of Vy(r), p,(r) and
V).

Note that if the constant in (13) is equal to +1, then
cos [27y(g)] = 0 and the first three terms in (17) cancel
out. In this case, 4I(r) will be proportional to the PPD
(linear in £) and the square of the PPD (quadratic in 7).

% exp [27i(g — G).rl.
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Now consider a crystal structure oriented in such a
way that the projected potential distribution along the
beam direction, V,(r), consists of a number of resolved
(i.e. non-overlapping) peaks. For such a structure, and
only for such a structure, ¥%(r) also consists of resolved
peaks located at the same positions as the peaks of
V,(r). The only difference is that the peaks of VX(r) are
sharper as compared to those of V,(r). Since the
variation of p,(r) is also in phase with V' (r), (17) shows
that there will usually be a one-to-one correspondence
between the intensity maxima and minima of the image
and the projected potential distribution of the crystal.
However, unlike the case of the PPD approximation
(§3.1), the relationship is no longer linear.

One further simplification arises if we consider a
structure whose projection along the beam direction is
composed of identical, resolved atoms. In this case, we
may use a method originally due to Sayre (1952), to
show that

sy, = 60U,
where 6 is a constant defined as

6="%1f,

where f is the atomic scattering amplitude for electrons
(the value of which corresponds to that of the Fourier
transform of an atomic peak) and %9 is the Fourier
transform of a ‘squared’ peak. In this case, and
assuming an ideal imaging system for which
cos[2my(g)] = O for all the contributing beams, (17)
shows that the image contrast is only proportional to
the PPD and hence is directly interpretable.

In practice, of course, where the lens aberrations are
always present, the usual phase alterations further
distort the image.

4, Results and discussion

According to (11), the pre-requisites for obtaining a
PPD-type image are the following conditions:

() a very thin crystal (¢ < 1/4y”");

(i) sin[27y(g)] = constant for all the reflections
contributing to the image.

The values of 4y" which should be considered in
condition (i) correspond to the Bloch waves which are
most strongly excited in the crystal. Usually, in
orientations of high symmetry, which is the case for
most structure images, only a few waves are strongly
excited and the contribution of the rest of the Bloch
waves to the image is quite negligible.

Equation (11) shows that the contrast in a PPD-type
image of a crystal is determined by the value of the
constant in condition (ii). The contrast is obviously
greatest for the constant = +1 and reduces to zero for
constant = 0. This latter condition has been called AFF
(aberration-free focus) by Hashimoto, Endoh, Tanji,
Ono & Watanabe (1977). In keeping with this
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terminology, we may call the more general condition (ii)
CAF (constant-aberration focus).

Some examples of PPD-type images are shown in
Fig. 1 for different numbers of beams admitted by the
objective aperture. The calculations are based on (1)
with = 4 A and the condition sin [27x(g)] = 1 satisfied
for all the beams. An accelerating voltage of 100 kV
was assumed and 345 beams were taken into account in
the calculation of Bloch-wave vectors and amplitudes.
However, utilizing the symmetry of the crystal, this
number reduces to 94 beams (Pirouz, 1981). Ten levels
of greyness, dividing the interval between the maximum
and minimum intensities, were used in the simulation of
images. The dark regions in all the images correspond
to regions of high electron density. Hence, these images
correspond to the negative (films) in the microscope.

As in the case of germanium, the present examples
show that, in order to be able to resolve the closely
spaced (1-36 A) atoms, it is necessary to allow, at least,
thirteen beams to interfere (Spence, O’Keefe & Kolar,
1977). An interesting point which emerges from these
figures is an elongation of the distance between the
closely spaced spots along the [001] axis. The deviation
from the correct dimensions decreases with increasing
number of beams contributing to the image. Thus, in
going from Fig. 1(c) (13 beams) to Figs. 1(d) (19
beams), 1(e) (23 beams) and 1(f) (43 beams), the ratio
of the distance between the closely spaced spots to the
lattice constant in the [001] direction decreases
approximately from 0-3 to 0-27, 0-26 and finally 0-25,
which is the structurally correct ratio. This elongation
may be also seen in the experimental structure images
of silicon (Izui, Furuno & Otsu, 1977) and cadmium
telluride (Yamashita, Ponce, Pirouz & Sinclair, 1981).
Since the images in Fig. 1 are PPD-type images, this
relative elongation is, clearly, not due to electron-optical
factors, but, rather, is a consequence of not taking
sufficient terms in the Fourier series (12) for a true
representation of the potential distribution.

It is well known that factors such as mechanical
instabilities and fluctuations in the objective lens
current, accelerating voltage and emission source
current introduce incoherencies in the electron beam. In
the case of weak phase objects, envelope functions have
been introduced by Frank (1973) and Fejes (1977) to
take the effects of beam convergence and chromatic
aberrations into account. However, as O’Keefe (1979)
and Ishizuka (1980) have pointed out, such envelope
functions should not be applied to strongly scattering
objects as it is necessary to include the cross-product
terms. In any case, such incoherencies effectively cut
off the contribution of higher-order beams [although
they may introduce periodicities not due to the
structural periodicity but to interference between
scattered waves (Ishizuka, 1980)]. It may therefore be
possible to use the size of the deviation from true
dimensionality in structure images of a known crystal
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to get a rough estimate of the influence of beam
coherency on the images.

As mentioned previously, the negative and positive
values of the constant in (13) give images with normal
and reverse contrast respectively. Figs. 2(a) and 2(b)
show these two types of images obtained with the
constant —1 and + | respectively.

As Cowley & lijima (1972) have emphasized, the
WPOA, or equivalently the PPD approximation in this
paper, is a poor approximation and does not have much
practical relevance for most crystal structure imaging.
Even so, such an approximation could be useful as a
reference point. The second-order approximation, dis-
cussed in §3-2, could have some limited application in

(d)
(a)
(e)
(b)
() B
Fig. 1. PPD-type images with different numbers of beams contributing to the image. r = 4 A sin [27(g)| = —1 for all beams. (a) 5 beam:

(b) 9 beam; (¢) 13 beam; (d) 19 beam: (e) 23 beam; (/) 43 beam.

" R
e T
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"
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Fig. 2. 13-beam PPD-type images with 1 = 4 A. (a) Normal contrast, sin [2my(g)] = —1: (b) reverse contrast, sin [27x(g)] = + 1.
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interpreting images, although even this approximation
is severely limited both in terms of the crystal thickness
and the imaging conditions. Equation (18) was obtained
for an ideal imaging system for which condition (13)
holds. Even for such an imaging system and assuming
that the structure consists of resolved peaks, (18) is
interpretable only if the projected structure along the
beam direction consists of resolved peaks. This may
explain the necessity of very accurate alignment of the
beam along the zone axes for obtaining interpretable
structure images. Even if the structure consists of
resolved peaks, a slight tilt may be sufficient to overlap
the projected peaks and in that case the location of
peaks of V'}(r) may not be at the same positions as the
peaks of V,(r). Consequently, the maxima and minima
of the image will not have a direct correlation with the
variations of the PPD. Conversely, the overlap of the
peaks along the directions parallel to the incident beam
is not important. It is only the projected potential
distribution which should consist of resolved peaks.

We should mention that, within their range of
validity, which is determined by the relative values of ¢
and 1/4y" for the most excited Bloch waves, (11) and
(17) may be used to calculate the image contrast, A7/(r)
| ~ 4I,(r) + A4lI,(r)l. The calculations only involve
summations over Fourier coefficients of potential and

(a)

(b)
Fig. 3. A typical 13-beam structure image of (a) a thin crystal, t =

60 A, and (b) a relatively thick crystal, 1 = 285 A, under real
operating conditions. 100 kV, C, = 0-7 mm, 4/ = 670 A.

471

thus obviate the need for computations of Bloch wave
vectors and amplitudes.

Finally, in Fig. 3, we have shown computed
thirteen-beam images of a silicon crystal at two
different thicknesses (t = 60 and t = 285 A). The
accelerating voltage is assumed to be 100 kV with the
objective lens having a C, of 0-7 mm and an underfocus
of 670 A. 345 beams were used in the Bloch-wave
calculations as before. These images, no longer of PPD
type, still exhibit the same kind of deviations from true
angular and dimensional proportions.
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